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Abstract

Motivation: Long-read transcriptome sequencing (LRTS) has the potential to enhance our understanding of alternative
splicing, and the complexity of this process requires the use of versatile computational tools, with the ability to accommodate
various stages of the workflow with maximum flexibility.

Results: We introduce IsoTools, a Python-based LRTS analysis framework that offers a wide range of functionality for
transcriptome reconstruction and quantification of transcripts. Furthermore, we integrate a graph-based method for identifying
alternative splicing events and a statistical approach based on the beta-binomial distribution for detecting differential events.
To demonstrate the effectiveness of our methods, we applied IsoTools to PacBio LRTS data of human hepatocytes treated
with the HDAC inhibitor valproic acid. Our results indicate that LRTS can provide valuable insights into alternative splicing,
particularly in terms of complex and differential splicing patterns, in comparison to short-read RNA-seq.

Availability and Implementation: IsoTools is available on GitHub and PyPI, and its documentation, including tutorials, CLI
and API references, can be found at https://isotools.readthedocs.io/.

Contact: lienhard@molgen.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction facilitate direct quantification of transcripts and splicing events from LRTS
data alone (Pardo-Palacios et al., 2021).

Long Read Transcriptome Sequencing (LRTS) allows for full-length
LRTS offers a wide range of applications for both model and non-

sequencing of expressed transcripts. In contrast to short-read RNA-
seq, this technology does not require fragmentation of transcripts and
thereby avoids introduction of errors due to alignment ambiguity and

model organisms. It has been used to identify important gene structures and
coding regions for poorly annotated non-model organisms (Abdel-Ghany

other technical artefacts. This is particularly relevant for the analysis et al., 2016; Clavijo et al., 2017). For model organisms such as humans,

of complex alternative splicing, since short reads cannot be assigned
reliably to transcripts over longer genomic distances, and thus facilitates

LRTS is commonly used to explore gene models, recover novel transcripts,
and alternative splicing events, and to quantify transcript expression, with
or without the integration of short-read data (Sahlin et al., 2018; Au
et al., 2013b). Very recently, LRTS has been combined with single-cell
technology, to explore and characterize splicing on the level of cell types
(Joglekar et al., 2021; Zheng et al., 2020; Mincarelli et al., 2020).
Previous studies have established a moderate correlation between

the identification of novel transcripts (Sarantopoulou et al., 2021; Zhang
et al., 2017; Kanitz et al., 2015; Byrne et al., 2019).

With the LRTS Iso-Seq protocol from PacBio, besides direct
cDNA/RNA sequencing by Oxford Nanopore, a technology has
emerged that holds the promise to improve transcript identification and

quantification. While hybrid sequencing approaches have been suggested LRTS and short-read measurements at the gene level, however, this

correlation diminishes significantly when evaluating transcript expression

(Wyman et al., 2020; Leung et al., 2021; Reese and Mortazavi, 2020).
To meet the demands of high-throughput transcriptome sequencing,

various tools and pipelines have been developed to analyze and interpret

in the past to combine detection (LRTS) and quantification (RNA-seq) of
transcripts (Au et al., 2013a), recent advances in accuracy and throughput
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the data. Tools such as TALON, FLAIR, IsoQuant and Bambu focus
on transcriptome reconstruction and quantification from LRTS data sets
(Wyman et al., 2020; Tang et al., 2020; Prjibelski et al., 2023; Chen
et al., 2021). SQANTI3 focuses on characterization of known and novel
transcripts obtained from these tools, and thus facilitates evaluation.
The Swan library (Reese and Mortazavi, 2020) implements visualization
functionality, and a statistical test based on a negative binomial model for
differential expression analysis on transcript level using LRTS.

Here, we present IsoTools, a novel tool for LRTS analysis that
integrates additional features and provides unprecedented flexibility of
the different analysis modules in order to facilitate highly explorative
and integrative analysis of the complex sequencing data. IsoTools is
a modular Python framework that integrates all relevant information
from identified transcripts and reference annotation, and provides a
variety of novel analysis functions to explore, analyze and interpret
the data. For example, for differential splicing the software offers
on the one hand the transcript-level quantification of isoforms and
on the other hand several statistical tests are provided that allow
splice event-level quantification that can be directly compared to short-
read data. The software emphasizes modularity, allowing users to
customize their analysis workflow and integrate with external tools. For
example, IsoTools enables the import of transcripts detected by other
tools and their further analysis, visualization or filtering. We designed
IsoTools to be user-friendly with a clear and intuitive interface, detailed
documentation, and tutorials to make it accessible for users with varying
computational expertise. We describe the major components of IsoTools
in transcriptome reconstruction, quantification, refined classification of
novel transcripts and differential splicing. Additionally, we performed
a methods comparison for transcriptome reconstruction with four other
tools and show that the detection of isoforms is largely dependent on the
different filtering settings with IsoTools adapting to different scenarios.
To demonstrate the tools capability in the context of drug response, we
generated LRTS data from human hepatocytes treated with the HDAC
inhibitor valproic acid. We compared the quantification of LRTS with
RNA-seq on the same samples both on the recovered transcript-level as
well as on the splice event-level. Our analysis revealed known and novel
splicing events with in vivo relevance as confirmed by healthy human liver
tissue. Overall IsoTools is a versatile and powerful tool for LRTS analysis
with a workflow of unprecedented flexibility and modularity that can easily
be adapted to the specific needs of the user.

2 Materials and Methods
2.1 Sample Preparation and IsoSeq Sequencing

The preparation of the samples processed here are described in (Wolters
et al.,2018). In brief, human hepatocytes were exposed to 15 mM valproic
acid (VPA) or 1% EtOH (CTL) and sampled after one day, two days and
three days of treatment. For the 4th time point, VPA was washed out
after day three, and cells were resampled after three additional days. We
prepared cDNA samples in triplicate for each time point and condition.
Using the PacBio Sequel II platform, we pooled and sequenced the
VPA treated and control samples, using one 8M SMRT cell per pool.
After confirming sample integrity and cDNA generation, we followed the
PacBio IsoSeq library preparation protocol (Suppl. Methods 1) sequenced
the samples on two Sequel II SMRT cells, resulting in 6.7M and 3.9M
polymerase reads for CTL and VPA treated samples, respectively.

IsoSeq subreads were processed using Iso-Seq v3.4 pipeline with
recommended parameters (Suppl. Methods 2), resulting in 2.6M and 4.3M
HiFi poly-A reads for VPA and CTL samples respectively, with an average
length of 3.6K and 3.9K bases. 96.6% and 95.5% of these HiFi reads have
an error rate of less than 1%. The finc reads were aligned to the human

genome GRCh38.p13 using minimap2 and further analysis was performed
using IsoTools, taking about 67 minutes on a single CPU core, using 20
GB RAM. The LRTS data is available from ENA under accession number
PRIEB46194.

2.2 Complementary Data

2.2.1 RNA-seq

RNA-seq data for the primary hepatocytes and liver samples were
downloaded from ENA accession PRJEB22198 and PRJEB35350
respectively. The short reads were aligned to the human reference genome
GRCH38.p13 using STAR aligner version 2.7.6a (Dobin ez al., 2013), with
provided gff annotation from GENCODE release 36 including annotation
of non-chromosomal scaffolds (Frankish et al., 2019). For hepatocytes,
we merged all alignments from the same time point, to resemble the
IsoSeq samples. We used rsem v1.3.1 (Li and Dewey, 2011) with the
transcriptome alignment from STAR to obtain read counts on gene and
transcript level. Next, we used rMATS rmats-turbo v4.1.1 (Shen
et al., 2014) to find differentially spliced events between VPA-treated
hepatocytes and control, either using events calculated by rMATS, or by
providing events generated by IsoTools from the GENCODE reference as
well as from IsoSeq LRTS.

2.2.2 ENCODE CAGE data

We downloaded CAGE TSS peaks for HepG2 cells from the ENCODE
data portal (Davis et al., 2018) (https://www.encodeproject.org/)
with the following identifiers: ENCFFO089AFK, ENCFF2200WX,
ENCFF241CGD, ENCFF248QKX, ENCFF373BNI, ENCFF419FNU,
ENCFF875ILB, ENCFF885VIJU.

2.3 Computational Approaches

2.3.1 Saturation Analysis

We implemented a novel model based approach to assist the user with
estimating the required depth of sequencing. The model is based on the
cumulative distribution function (CDF) of a negative binomial distribution,
with three parameters n,r and p: The sampling probability p depends on the
cellular concentration of the transcript in the samples. A highly expressed
transcript is more likely to be covered compared to a transcript with few
RNA molecules per cell. The model assumes the sampling probability
to be proportional to the RNA concentration. The second parameter,
r, corresponds to the minimum required coverage to confidently call a
transcript impacts the chance of a transcript to be discovered. The PacBio
IsoSeq clustering pipeline requires two copies of a transcript to report it.
However, depending on the application, it may be appropriate to reduce or
increase this threshold (see Suppl. Methods 3 and Suppl. Figure S2). The
last parameter, n, corresponds to the sequencing depth. If two parameters
are given, the model can be used to determine the missing parameter. For
example, if the concentration of a transcript of interest can be estimated,
and the required minimum coverage is chosen, the model can suggest the
required sequencing depth.

2.3.2 Transcriptome Reconstruction

To reconstruct the transcriptome from aligned reads, IsoTools groups
reads with the same intron chain into transcripts and groups transcripts
sharing at least one splice junction into genes. Similarly, genes sharing
splice junctions with a reference gene are assigned to that reference
gene. Unspliced transcripts are assigned to a gene if they overlap at least
50%. Next, IsoTools corrects ambiguous splice sites by comparing their
positions to the reference annotation. Specifically, if both the donor and
acceptor sites of a splice junction are shifted in the same direction by
the same number of bases compared to the reference, IsoTools uses the
reference positions. To determine the positions of transcription start sites
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(TSSs) and polyadenylation sites (PASs), IsoTools employs a gene-wise
peak calling approach to identify the most prominent start and end positions
of reads. For each transcript, we assign the TSS and PAS by identifying
the peak closest to the most read start and end positions, respectively.
By using this method, IsoTools standardizes the positions of TSSs and
PASs across all transcripts of a given gene, without being biased by the
reference annotation. Finally, IsoTools computes quality control values
for each transcript based on various features, to facilitate the detection and
subsequent filtering of technical artifacts (see Suppl. Methods 4).

2.3.3 Filtering Query Syntax

Transcript filtering is implemented as a query syntax, based on logical
combinations of named "tags", by convention, a single word in capital
letters. These tags are defined Python expressions, which are evaluated in
the context of the transcript dictionary, so it may depend on all metrics and
properties of the transcript. IsoTools provides predefined tags, covering
technical artefacts, but also the novelty categories, and properties of
the reference annotation. In Suppl. Methods 4, we describe how these
default definitions have been derived. Users may adapt the expressions, or
add custom tags with custom expressions, to further extend the filtering
framework. These tags can then be logically combined in a query string,
which is passed to the analysis or export functions in IsoTools, and
evaluated for each transcript. In addition, the user may specify a genomic
region, and a minimum or maximum read coverage.

2.3.4 Definition and Classification of Binary Alternative Splicing
Events

In analogy to the commonly used definition on splice graphs (Sammeth,
2009), we define binary alternative splicing events (ASEs) based on
bubbles in the segment graph of a gene. In a segment graph, nodes represent
disjoint exonic segments, and edges imply that the two exonic segments
succeed one another in one or more transcripts. The segment graph is
bi-directed, as each node has a set of incoming and outgoing edges, and
ordered by the genomic position, meaning an edge from node x; to node x ;
isonly allowedif z; < x;, e.g. the genomic end position of 2; is smaller or
equal to the start position of ;. If two succeeding segments are separated
by an intron, the edge represents a splice junction. On the other hand, if the
genomic end position of the preceding segment corresponds to the genomic
start position of the succeeding segment, the edge is called internal. This
implies either an alternative preceding or succeeding segment, connected
by a splice junction edge.

Bubbles are structures in the segment graph, with two paths starting
in a common segment s and ending in a common segment ., but
the paths do not share any segments except s and x. (cf. Fig. 3A-C).
We define the "primary path" as the path for which the outgoing edge
from zs exceeds the outgoing edge of the other path, which in turn is
called the "alternative path". We further categorize the alternative path in
5 different classes: the alternative is classified as mutually exclusive (ME)
if the primary path from x s to x contains at least one additional segment
z ) g- The definition of the other classes depend on whether the outgoing
edge of x5 and the incoming edge of = on the alternative path correspond
to splice junctions or internal edges (within an exon). Alternative paths
are called exon skipping (ES) if both edges are splice junctions, and as
intron retention (IR) if both edges are internal. If one of the edges is a
splice junction and the other internal, the alternative is classified as 5° or
3’ alternative splice site (SAS and 3AS). For each primary path, we group
all alternative paths of the same category, and find the set of transcripts
A supporting one of the alternatives and B supporting the primary. This
definition results in a finite set of classified binary alternative splicing
events for each gene. They can be quantified by the proportion spliced in

(PSI), defined as the number of long reads supporting transcripts from A
over the total number of reads, supporting transcripts from A or B.

2.3.5 Statistical tests for differential splicing
We implemented 3 statistical tests for differential splicing. The first two,
likelihood ratio test with binomial model and two-proportions z-test, apply
if two individual samples are compared.

For the binomial likelihood ratio test, the number of supporting
reads is modeled with a binomial distribution. The likelihood ratio test
is specified by the statistic

A= —2(f1 — L) ~ X2 )

where

0 = lTL(B(k:l | ﬁl,n1)) -+ ln(B(k’2 | ﬁ27n2)) and

Lo = In(B(k1 + k2 | p,n1 + n2))

are the maximized log-likelihoods under the alternative H1 and the null
hypothesis Ho. B(n | p,n) is the probability mass function of the

binomial distribution, which is maximal at the empirical PSI values
k1+ko
i ni+nz
Alternatively, when the sample size is large enough (n > 30 reads),

the two-proportions z-test can be used as an approximation. The test is

pi = Z—: for for sample 4, and p = for both samples combined.

specified by the statistic

z= L P2 ~ N(0,1) @
1) + L)

where n; = k; + [; is the total number of reads of sample ¢ € [1,2]
covering the event. k; and [; are the number of reads supporting the
alternative (set A) and primary (set B) variants, respectively. Both tests
yield very similar results (p-values r=0.999, see Suppl. Fig. S13).

In the context of differential splicing analysis between two groups
of samples, the PSI values may vary within each group, leading to
overdispersion and rendering the binomial distribution unsuitable. To
address this, IsoTools implements a beta-binomial mixture likelihood
ratio test, which captures the variability within the two groups by modeling
the number of supporting reads with a beta-binomial mixture distribution.
The probability parameter p in the binomial distribution is modeled with
a beta distribution Beta(a, b), flexibly representing variations in the PSI
values between the samples. In IsoTools, the maximum log-likelihood
parameters a and b are determined numerically by a quasi Newton
optimization method (LM-BFGS from SciPy (Virtanen et al., 2020)).
The beta-binomial model has been recently applied to model alternative
splicing in RNA-seq data, for example in the context of identifying rare
splicing events in tissue data (Mertes et al., 2021) and to identify subtypes
of cancer (Wang et al., 2023).

In addition to ASEs, all tests defined above can also be applied to
detect differential usage of transcription start and poly-A sites. In this
case, all transcripts supporting a particular start/poly-A site are considered
the alternative set B, whereas all other transcripts constitute the primary
set A. With all tests, multiple testing correction is applied (Benjamini and
Hochberg, 1995).

3 Results

3.1 IsoTools Streamlines Transcriptome Data for Efficient
Exploration and Filtering

IsoTools handles the transcriptome reconstruction process by importing
aligned full-length reads, correcting for splice junction ambiguities,
grouping the reads into transcripts, and grouping transcripts into genes.
Each gene’s splicing structure is then represented as a segment graph, with
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Fig. 1: A Probability of observing a transcript depending on the cellular concentration of 0.5 (blue line), 1 (orange), 2 (green), 5 (red) and 10 TPM (purple)

and sequencing depth at detection threshold of 2 reads. Dashed horizontal lines represent the sequencing depth of the VPA and CTL IsoSeq samples.
B Read length distribution compared to level I GENCODE transcripts. C Fraction of reads affected by different technical artifacts.

nodes representing exonic segments and edges indicating the sequence of
exons within a gene’s transcripts (Methods).

In addition to the splicing structure, IsoTools extracts a range of
information from the alignments, including the number of reads per
transcript, several quality control metrics, and mutation information,
and integrates this information with data from the reference genome
and annotation. The resulting tree-based data structure (Suppl. Fig. S1)
can be accessed by genomic position or gene identifier and facilitates
exploring the data at multiple levels of detail, from individual nucleotides
to transcriptome-wide statistics. The transcriptome can also be easily
exported or imported from or to gtf format for compatibility with other
tools.

To validate the method, we generated datasets from human hepatocytes
treated with the HDAC inhibitor valproic acid (VPA) and untreated cells
(CTL), yielding 2,615,181 and 4,200,885 aligned full-length non-chimeric
poly-A HiFi reads, respectively. Our saturation model (Methods) indicated
that for both samples, the probability of observing even rare transcripts
(one TPM) was over 70%, and for transcripts expressed at 2 TPM or
more, the probability of observing at least two reads was close to 100%.
These results demonstrate the saturation of transcript discovery at the given
concentration and detection threshold (Fig. 1A).

To minimize the impact of technical artifacts and improve the accuracy
of transcript identification, IsoTools employs various quality control (QC)
measures, such as the transcript length distribution, to identify systematic
depletion of shorter or longer transcripts in comparison to the reference
(Fig. 1B). Additionally, QC methods comprise detection of technical
artifacts, such as internal priming, reverse transcriptase template switching
(RTTS), and truncation. Based on QC metrics, we implemented specific
filter expressions for these artifacts, to tag affected transcripts (Methods).
For subsequent analyses, visualizations, and data exports, the user can
remove affected transcripts according to these tags. In order to find
reasonable thresholds for the filter expressions, we made use of additional
information such as CAGE TSS peaks, and compared QC metrics on
the most credible GENCODE transcripts with support level 1 with the
most suspicious transcripts identified by sequencing (cf. Suppl. Methods).
However, filter expressions can be modified or extended by the user at any
step of the analysis. Our analysis of the CTL and VPA hepatocytes samples
showed that technical artifacts affected a significant fraction of the reads
(10.5% and 9.3%), with the largest contribution coming from transcript
truncation (4.4% and 3.8%). This is followed by RTTS (3.8% and 3.4%)
and internal priming (2.6% and 2.4%) (Fig. 1C).

3.2 LRTS Transcriptome Reconstruction is Largely
Dependent on Filtering Criteria

Transcriptome reconstruction yields a high number of gene and transcript
candidates. While a large fraction is supported by only few reads, or
can be traced back to technical artifacts, the identified numbers by
far exceed the number of annotated transcripts, with a great range of
experimental evidence and biological properties. For any transcript-based
downstream analysis, a well tailored filtering strategy is crucial. To
this end, we implemented a filtering query syntax that enables the user
to efficiently implement arbitrarily complex filtering rules, to fit the
specific requirements (Methods). We demonstrate three different filtering
strategies, here called permissive, balanced, and strict, suitable in different
analysis situations. Filter queries for the strategies can be found in the
Supplementary Methods 5. The effect of these filter strategies with respect
to the novelty categories is shown in Suppl. Fig. S6.

With the 2,615,181 and 4,200,885 full-length reads of the CTL and
VPA samples combined, we called 828,973 distinct intron chains as
candidate transcripts, at 93,233 genomic loci (genes). For permissive
filtering, we request at least two reads per transcript, and removing
potential technical artifacts. This reduces the numbers to 21,447 genes,
with 157,134 transcripts, of which 77.8% are not annotated in GENCODE.
Since novel transcripts may require additional evidence, the balanced
filtering additionally requires at least 7 reads (about 1 TPM) for
transcripts not annotated in the reference, yielding 15,315 genes, with
57,698 transcripts, 49 % of which are novel. However, many of these
transcripts contribute less than 5% to the total read count of the gene,
yielding complex gene models with up to 134 transcripts per gene even
after balanced filtering. To simplify transcript analysis on gene level
for downstream analysis, we suggest keeping only transcripts with a
"substantial" contribution of at least 5% to the genes total, and at least
7 reads. This strict strategy yields 12,267 genes, with 21,582 transcripts,
of which 32% are not found in GENCODE. Generally, stricter filtering
yields higher fraction of known transcripts (full splice matches, FSM),
while novel combinations of existing splices sites (novel in catalog, NIC)
as well as transcripts using novel splice sites (novel not in catalog, NNC)
are reduced (Suppl. Fig. S6).

We compared IsoTools transcriptome reconstruction with four other
recently published tools for transcriptome reconstruction (IsoQuant
(Prjibelski et al., 2023), TALON (Wyman et al., 2020), FLAIR (Tang
et al., 2020), and Bambu (Chen et al., 2021)). Each tool was applied
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software, and the color indicate the number of tools reporting a specific transcript. B Venn diagrams (bottom) depict the overlap between IsoTools with
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to the hepatocyte data set with its default filtering criteria, and IsoTools
transcriptome reconstruction was run with varying filters. Bambu also
reports reference transcripts not supported by long reads, these where
manually filtered for subsequent comparisons. With permissive filtering,
about half of the transcripts identified by IsoTools are shared with any
of the other tools while the remaining 72,733 are uniquely recovered
by IsoTools. This proportion of uniquely identified transcripts drops to
less than 10% (5,564 unique transcripts) with IsoTools balanced filtering
strategy. With strict filtering, most of the transcripts are common with at
least one other tool. While 20,642 transcripts are reported by all 5 tools, the
total number of transcripts identified by each tool with default parameters
varies substantially (Fig. 2 and Suppl. Fig. S7).

All tools except IsoQuant report genes with more than 100 transcripts.
The high fraction of novel, not annotated transcripts demonstrates on
the one hand the value and power of long reads for transcriptome
reconstruction. On the other hand, the high number of transcripts
observed may overwhelm and confound downstream analysis. Hence,
transcriptome reconstruction is heavily dependent on carefully selected
filtering criteria to extract qualified transcripts from the long reads.
Alternatively, transcriptome reconstruction provided from other tools can
be imported in IsoTools, using gtf files as interfaces. This can be used,
for example to import different strategies for TSS recovery, and aids in
identifying more robust transcript results.

3.3 Refined Classification of Novel Transcripts Facilitates
Biological Interpretation

The discovery of novel transcripts by long reads presents both opportunity
and uncertainty, as they may be functional variants overlooked by short
read technology or artifacts. To determine their nature, we refined the
widely adopted classification scheme for novel transcripts introduced by
SQUANTI (Tardaguila et al., 2018) with 19 subcategories that directly
facilitate biological interpretation (Suppl. Methods 6 and Suppl. Fig. S4).

In the primary hepatocyte LRTS, 73.5% and 74.5% of the reads
(after filtering for technical artefacts) fully match known transcripts (full
splice matches, FSM) whereas the most prevalent category for novel
transcripts are categorized as “novel combinations” of known splice
junctions, affecting 9.9% and 9.3% of the reads, for CTL and VPA treated
samples respectively (Suppl. Fig. S5A). Often these combinations span
a large genomic distance, and thus these novel transcripts are hardly

detectable with short reads. Nonetheless, they can be highly expressed
and thus might aid in complementing the reference annotation. One such
novel transcript detected by this study is corresponding to the SPTBN1
gene (spectrin beta, non-erythrocytic 1), which combines the promoter of
the transcript SPTBN1-201 with the PAS of SPTBN1-202 and SPTBN1-
207, after sharing 30 intermediate exons with both transcript variants thus
spanning a distance of 100 kb (Suppl. Fig. S5B). SPTBNI has recently
been assigned a role as a therapeutic target for nonalcoholic steatohepatitis
and liver cancer and thus detecting further highly expressed transcripts of
this gene is important. The novel transcript is supported by 3,306 and
1,620 reads (about 30% of all reads of that gene) and both alternative
splicing events affect the coding region, potentially yielding a novel protein
sequence.

Exon skipping transcripts are among the next most frequent categories
of novel transcripts, however, we found that a large part within this
categories must be attributed to misalignment of short exons < 30 bases,
which are aligned to either of the neighboring exon boundaries. This
issue affects up to 20% of the transcripts in these categories, and more
than 50% of the highly covered transcripts with more than 50 IsoSeq
reads (Suppl. Figure S8), a technical artifact that can be approached
at the alignment step (Sahlin and Mékinen, 2021). We used IsoTools
filtering framework described above to select for longer skipped exons that
contribute substantially to the total genes expression, and thus are likely
functional. For example, we found a novel transcript of the gene PATL1,
skipping the 102 bp exon 7, which is one of the major transcripts of the
gene in both CTL and VPA treated hepatocytes. (28.8% and 21.5%) (Suppl.
Fig. S9). PATL1 is involved in mRNA degeneration, and the skipped exon
overlaps the protein domain involved in RNA-binding. Junction coverage
of short-read data from the same samples confirm exon skipping of a
similar proportion of transcripts. Notably, the exon skipping event is also
supported by short read RNA-seq of human liver samples, demonstrating
in-vivo relevance.

3.4 IsoTools Facilitates Reliable Analysis of Alternative
Splicing

We evaluated the ability of long read coverage to quantify gene expression

and compared it to RNA-seq (Suppl. Methods 7 and Suppl. Fig. S10).

Our analysis revealed good agreement in gene expression levels (r=0.75

and 0.76 for VPA and CTL), confirming the suitability of long reads for
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categories. The primary and alternative paths of the bubbles are depicted by purple and orange coloring of the edges, respectively. D Comparison of ASE
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expression quantification. However, we observed a reduced correlation
on the transcript level (r=0.42 and 0.43), which may on the one hand be
attributed to challenges in transcriptome reconstruction using long reads,
or bias and ambiguity from short read transcript assignment on the other. To
provide a quantification approach that is independent of the transcriptome
reconstruction step, we developed a method to detect alternative splicing
events (ASEs) as bubbles in the segment graphs of gene models (Fig.
3A-B; cf. Methods). This method enables us to break down the splicing
complexity and isolate the individual events that differentiate transcripts.

ASEs are subdivided and classified according to the underlying
molecular principles as exon skipping (ES), intron retention (IR), 5* and
3’ alternative splicing (5AS and 3AS), and mutually exclusive exons (ME)
(Fig. 3C). Relative expression of ASEs is quantified with the percent splice
index (PSI), which is the fraction of reads supporting the alternative.
Differential splicing events are identified with a two proportions z-test
when only two samples are under study as in our test case, or with a beta-
binomial mixture likelihood test when comparing two groups of samples
(see Methods).

In total, we identified 3.797 IR, 2.713 ES, 1.526 3AS, 1.243 5AS, and
376 ME events in the primary human hepatocytes, covered by at least
100 reads over both VPA and CTL, where the alternative contributed at
least 10% of the reads. 46.1% of these events are not annotated, and thus
challenging to quantify with short read analysis tools, such as rMATS
(Shen et al., 2014). To validate the LRTS quantification of both novel
and known events, we provided rMATS with the identified events. Since
the rMATS event definition is less flexible, not all events were taken into
account, but 80.1% of the IsoTools events could be exported to rMATS,
and were quantified with the short reads. We found high correlation of PSI
values for ES (r=0.84), 5AS (r=0.8) 3AS (r=0.74) and IR (r=0.58), while
quantification of more complex ME events were not correlated (r = -0.05)
(Fig. 3D). This result suggests that our approach provides reliable ASE
detection and quantification from LRTS, also for novel splicing events.

3.5 VPA Induces Differential Splicing Events in Primary
Human Hepatocytes on Different Levels of Complexity

‘We applied the two proportions z-test to identify differential splicing events
between treated (VPA) and untreated (CTL) hepatocytes, and found 777
differential splicing events in 538 different genes at an FDR of 1%. These
events include 26 ME, 253 ES, 90 5AS, 59 3AS, and 349 IR events,
featuring different levels of complexity. Also for the differential events,
short read quantification with rMATS was in good agreement, with a
Spearman correlation of 0.68 (Suppl. Fig. S12). We also found differential
usage of 956 transcription start sites (TSSs) and 290 polyadenylation sites
(PASs) between VPA and CTL. Suppl. Table 1 lists the differential splice
events between VPA and CTL-treated hepatocytes. These numbers suggest
a widespread effect of VPA on the usage of TSS. Indeed, it has been shown
that HDAC inhibitors (as well as DNMT inhibitors) specifically introduce
cryptic transcription start sites (TSSs) in long terminal repeats (Brocks
et al., 2017). This was shown for the HDAC inhibitor SAHA, a class I, II
and IV inhibitor, while VPA targets class I and II proteins.

While ME events are rare (3.3%), the most significant splicing event
involves the mutually exclusive exons 4A and 4B of SLC39A14 (Solute
Carrier Family 39 Member 14), a metal cation transporter responsible
for the uptake of trace elements such as zink, iron and manganese in the
liver. Both versions, containing either exon 4A or 4B, yield functioning
proteins, but the uptake kinetics vary substantially (Girijashanker et al.,
2008). While we found both variants expressed at comparable level in
the CTL sample, the proportion of 4B increased to 75% in the VPA-
treated sample (Fig. 3E). A similar shift has been observed between normal
and colorectal cancer samples (CRC) (Thorsen et al., 2011). Notably,
we found the same trend with rMATS using the short read data when

providing the events identified with IsoTools (42% to 70% PSI of exon
4B), while rMATS alone did not identify the correct event. IsoTools
identified this differential splicing event with high confidence, highlighting
the power of long-read sequencing for resolving complex splicing events.
Furthermore, the long reads facilitate following up on functional analysis
of the transcripts involved in the splicing event. IsoTools provides detailed
annotation of the open reading frames and domain structures of the
isoforms (Suppl. Methods 8), such as predicting the effects of the splicing
event on protein function. For the ME event in SLC39A14, all major
transcripts representing the two variants of the ME event are full-length
transcripts. The two major transcripts, which together make up 77% of the
gene’s expression, correspond to reference transcripts 203 (with exon 4A)
and 204 (with exon 4B). However, two additional transcripts are expressed,
both containing a novel exon in the 5 UTR, and show the same effect of
VPA on the mutually exclusive exon as the canonical forms (Figure 3
F). Annotating and visualizing the InterProScan domain structure (Blum
et al., 2021) confirms that exons 4A and 4B are functionally similar, both
encoding the first two transmembrane domains (Figure 3G).

ES events account for 32.6% of differential splicing. The most
significant differential ES event affects increased inclusion of exon 32
of the FN1 gene (fibronectin 1; g-value = 3,55E-111, PSI 9% in CTL and
15% in VPA). Again, rMATS analysis of short read RNA-seq confirmed
this differential event (PSI in CTL 12% and VPA 18%). FN1 is one of
the first genes for which alternative splicing was described, and regulation
and functional effects of splicing in FN1 have been studied extensively
(Kornblihtt ez al., 1984). The particular exon subject to the skipping event is
referred to as extra domain A (EDA), one of two extra domains of this gene,
and inclusion is regulated by Serine/arginine-rich splicing factors SRSF1
and SRSF3. While the extra domains are essential for normal development,
elevated inclusion of EDA is associated with several diseases, including
psoriasis, rheumatoid arthritis, diabetes and cancer (White et al., 2008).
Previous studies observed similar effects on splicing of FN1 triggered
by HDAC inhibitor sodium butyrate (NaB), but in this case resulting in
elevated inclusion of exon 23, which is extra domain B (Hnilicovi er al.,
2011). Aberrant splicing of FN1 may be related to hepatotoxic effects, as
downregulated or dysfunctional SRSF3, and subsequent aberrant splicing
of its targets including elevated EDA-Fn1, has been associated with liver
disease (Kumar et al., 2019). We thus conclude that the implemented LRTS
workflow reliably identifies differential splicing events on different levels
of complexity.

4 Discussion

Here, we presented IsoTools, a flexible and powerful Python framework
for the analysis of LRTS data. It provides data structures to search, access,
and filter the transcripts, as well as functionality to compute quality
control metrics, to compare and annotate the transcripts with reference
annotations, to integrate data from several LRTS experiments, to quantify
transcript expression levels based solely on LRTS, to perform statistical
analysis for differential splicing, and to export of the data in several output
formats. In addition, the tool facilitates the depiction of summary statistics
as well as complex splicing models of individual genes and transcripts.
IsoTools stands out with its unparalleled flexibility, thanks to its modular
design and interfaces for custom metrics and algorithms. This makes it a
highly adaptable solution for LRTS data analysis, particularly for advanced
users seeking to tackle novel use cases, such as single cell LRTS analysis.
The tool’s ability to import and export transcriptomes in gtf format not
only provides added convenience, but also ensures compatibility with
other tools and facilitates integration into existing workflows. With the
ability to import transcriptomes from different sources, users can also
easily compare and validate the results from different pipelines to ensure
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the accuracy of their analysis. The modular design of IsoTools represents
a significant departure from traditional, rigid data analysis tools. This
innovative approach allows users to fully customize the tool and explore
new applications, making IsoTools a truly unique and valuable resource
for LRTS data analysis.

To characterize novel transcripts, we introduce a fine grade biologically
motivated classification scheme, refining the established technically
defined classes. The categories facilitate direct interpretation of differences
between samples, and may hint towards specific disturbed splicing
mechanisms, such as introduced by SF3B1 hotspot mutations, which
specifically result in shifted in 3’ splice sites (Darman et al., 2015). By far,
the most common category of novel transcripts was "novel combinations of
known splicing events". Often, these combinations are separated by several
kilobases, and thus cannot be identified with short read sequencing.

We propose a graph-based approach to identify and classify alternative
splicing, based on bubbles in the segment graph. This definition yields
binary events, which are classified by event type and quantified with
PSI values. These events provide the basis for statistical tests for the
detection of differential splicing, either between two samples or groups
of samples. This approach is fundamentally different from differential
expression analysis on transcript level, for which the well established
framework based on negative binomial generalized linear models (GLMs)
(Robinson et al., 2010; Love et al., 2014) can be applied, also with LRTS
data (Reese and Mortazavi, 2020). However, identification of differential
splicing events (DSE) has several advantages over differential transcript
expression (DTE). While DTE may be a combination of differential
regulation on gene level and differential splicing, DSE focuses on local
splicing regulation, and is independent from gene expression levels.
Further, DSE can distinguish several related or independent splicing events
on the same gene. As the individual events can be classified, DSE facilitates
categorization of differential splicing. Last, DSE aggregates statistical
power from all transcripts covering the event. Even transcripts affected
by technical artefacts, such as RTTS and fragmentation, may still provide
useful information for event level analysis. On transcript level, these
artefacts would result in distinct transcripts, and thus further increase the
complexity and disturb the analysis if not filtered out. Hence, to interpret
and validate the effects of differential splicing, DSE analysis yields more
concise results. While differential splicing analysis is also possible with
short read RNA-seq, long-read technology offers several advantages for
this task. With long reads complex splicing events can be resolved and
quantified with high confidence, which can be difficult using short reads. In
addition, long reads do not suffer from alignment ambiguity and reduce the
dependence on reference annotations, which is particularly important when
dealing with novel transcripts and splice junctions. Moreover, long-read
sequencing identifies the full-length transcripts, enabling the functional
interpretation of splicing events by inferring nonsense-mediated decay
(NMD) and annotating protein domains and thus provides a more complete
understanding of the functional impact of alternative splicing.

Much like gene expression, alternative splicing is subject to biological
variability within samples and groups of samples of the same condition.
Statistical tests that compare individual samples, such as the two proportion
z test and the likelihood ratio test with binomial model implemented
here, neglect this variability, making the analysis prone to false positive
results. Thus, the third implemented test, the likelihood ratio test with
beta-binomial model, facilitates the comparison of groups of samples. The
biological variability within the groups is estimated from the data and taken
into account. While this approach promises to be more robust, it depends
on replicates and thus could not be demonstrated with our data, however,
it is demonstrated with data from ENCODE in the differential splicing
tutorial which is part of IsoTools online documentation. To date, LRTS
datasets with biological replicates are the exception, but continuously
falling sequencing cost, higher throughput in combination with sample

multiplexing, as well as better software facilitating additional applications
will improve the cost benefit ratio of biological replicates.

In primary human hepatocytes, IsoTools identified aberrant splicing
events in different categories, caused by the HDAC inhibitor VPA. The role
of HDACs in modulating alternative splicing has recently been emphasized
by investigating the role of histone marks in the choice of splice sites
and regulation of splicing (Rahhal and Seto, 2019). We observed changes
in splicing after VPA treatment on all levels of complexity but most
prominently with usage of mutually exclusive exons, exon skipping and
alternative TSS events, and we validated these events by short-read RNA-
seq of the same samples. While not yet reported after VPA treatment, many
of the identified differential events have been observed to be triggered also
by other HDAC inhibitors in comparable models, demonstrating the ability
of LRTS to detect differential splicing between samples.

IsoTools is simple to install, flexible, versatile, and easy to use. It offers
novel functionality, including expression quantification and differential
splicing analysis, extending the range of potential applications for LRTS.
Its main strength comes from the open and modular framework design,
facilitating exploitative analysis and development of specific use cases. For
starters, the extensive documentation contains several example workflows,
covering relevant use cases which can simply be adapted by the user. To
realize standardized workflows, there is also a command line interface,
providing some of the functionality without the need to write python code.
We demonstrated the utility of our tool by analyzing LRTS data from
hepatocytes treated with VPA, and identified novel and differential splicing
events, of which several are expressed also in human liver samples and are
thus likely relevant in-vivo.
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